Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 14(4): R121, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22920668

RESUMO

INTRODUCTION: Retinoic acid signaling plays key roles in embryonic development and in maintaining the differentiated status of adult tissues. Recently, the nuclear retinoic acid receptor (RAR) isotypes α, ß and γ were found to play specific functions in the expansion and differentiation of the stem compartments of various tissues. For instance, RARγ appears to be involved in stem cell compartment expansion, while RARα and RARß are implicated in the subsequent cell differentiation. We found that over-expressing c-Myc in normal mouse mammary epithelium and in a c-Myc-driven transgenic model of mammary cancer, disrupts the balance between RARγ and RARα/ß in favor of RARγ. METHODS: The effects of c-Myc on RAR isotype expression were evaluated in normal mouse mammary epithelium, mammary tumor cells obtained from the MMTV-Myc transgenic mouse model as well as human normal immortalized breast epithelial and breast cancer cell lines. The in vivo effect of the RARα-selective agonist 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)carboxamido]benzoic acid (Am580) was examined in the MMTV-Myc mouse model of mammary tumorigenesis. RESULTS: Modulation of the RARα/ß to RARγ expression in mammary glands of normal mice, oncomice, and human mammary cell lines through the alteration of RAR-target gene expression affected cell proliferation, survival and tumor growth. Treatment of MMTV-Myc mice with the RARα-selective agonist Am580 led to significant inhibition of mammary tumor growth (~90%, P<0.001), lung metastasis (P<0.01) and extended tumor latency in 63% of mice. Immunocytochemical analysis showed that in these mice, RARα responsive genes such as Cyp26A1, E-cadherin, cellular retinol-binding protein 1 (CRBP1) and p27, were up-regulated. In contrast, the mammary gland tumors of mice that responded poorly to Am580 treatment (37%) expressed significantly higher levels of RARγ. In vitro experiments indicated that the rise in RARγ was functionally linked to promotion of tumor growth and inhibition of differentiation. Thus, activation of the RARα pathway is linked to tumor growth inhibition, differentiation and cell death. CONCLUSIONS: The functional consequence of the interplay between c-Myc oncogene expression and the RARγ to RARα/ß balance suggests that prevalence of RARγ over-RARα/ß expression levels in breast cancer accompanied by c-Myc amplification or over-expression in breast cancer should be predictive of response to treatment with RARα-isotype-specific agonists and warrant monitoring during clinical trials.


Assuntos
Benzoatos/farmacologia , Neoplasias da Mama/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Genes myc , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/genética , Tetra-Hidronaftalenos/farmacologia , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Neoplasias Pulmonares/secundário , Camundongos , RNA Interferente Pequeno/genética , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Proteínas de Ligação ao Retinol/genética , Transcrição Gênica , Receptor gama de Ácido Retinoico
2.
Dev Biol ; 349(2): 125-36, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20974122

RESUMO

We generated a transgenic (Tg)-mouse model expressing a dominant negative-(DN)-RARα, (RARαG303E) under adipocytes-specific promoter to explore the paracrine role of adipocyte retinoic acid receptors (RARs) in mammary morphogenesis. Transgenic adipocytes had reduced level of RARα, ß and γ, which coincided with a severely underdeveloped pubertal and mature ductal tree with profoundly decreased epithelial cell proliferation. Transplantation experiments of mammary epithelium and of whole mammary glands implicated a fat-pad dependent paracrine mechanism in the stunted phenotype of the epithelial ductal tree. Co-cultures of primary adipocytes, or in vitro differentiated adipocyte cell line, with mammary epithelium showed that when activated, adipocyte-RARs contribute to generation of secreted proliferative and pro-migratory factors. Gene expression microarrays revealed a large number of genes regulated by adipocyte-RARs. Among them, pleiotrophin (PTN) was identified as the paracrine effectors of epithelial cell migration. Its expression was found to be strongly inhibited by DN-RARα, an inhibition relieved by pharmacological doses of all-trans retinoic acid (atRA) in culture and in vivo. Moreover, adipocyte-PTHR, another atRA responsive gene, was found to be an up-stream regulator of PTN. Overall, these results support the existence of a novel paracrine loop controlled by adipocyte-RAR that regulates the mammary ductal tree morphogenesis.


Assuntos
Adipócitos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glândulas Mamárias Animais/embriologia , Morfogênese/fisiologia , Comunicação Parácrina/fisiologia , Receptores do Ácido Retinoico/metabolismo , Células 3T3-L1 , Animais , Proteínas de Transporte/metabolismo , Meios de Cultivo Condicionados/química , Citocinas/metabolismo , Primers do DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Immunoblotting , Imuno-Histoquímica , Glândulas Mamárias Animais/transplante , Camundongos , Camundongos Transgênicos , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tretinoína/farmacologia
3.
Breast Cancer Res ; 12(5): R79, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20923554

RESUMO

INTRODUCTION: Retinoic acid signaling pathways are disabled in human breast cancer suggesting a controlling role in normal mammary growth that might be lost in tumorigenesis. We tested a single receptor isotype, RARα1, for its role in mouse mammary gland morphogenesis and MMTV-wnt1-induced oncogenesis. METHODS: The role of RARα1 in mammary morphogenesis was tested in RARα1-knockout (KO) mice and in mammary tumorigenesis in bi-genic (RARα1/KO crossed with MMTV-wnt1) mice. We used whole mounts analysis, stem cells/progenitor quantification, mammary gland repopulation, Q-PCR, test of tumor-free survival, tumor fragments and cell transplantation. RESULTS: In 2 genetic backgrounds (129/Bl-6 and FVB) the neo-natal RARα1/KO-mammary epithelial tree was 2-fold larger and the pubertal tree had 2-fold more branch points and 5-fold more mature end buds, a phenotype that was predominantly epithelial cell autonomous. The stem/progenitor compartment of the RARα1/KO mammary, defined as CD24(low)/ALDH(high activity) was increased by a median 1.7 fold, but the mammary stem cell (MaSC)-containing compartment, (CD24(low)/CD29(high)), was larger (~1.5 fold) in the wt-glands, and the mammary repopulating ability of the wt-gland epithelium was ~2-fold greater. In MMTV-wnt1 transgenic glands the progenitor (CD24(low)/ALDH(high activity)) content was 2.6-fold greater than in the wt and was further increased in the RARα1/KO-wnt1 glands. The tumor-free survival of RARα1/KO-wnt1 mice was significantly (p=0.0002, Kaplan Meier) longer, the in vivo growth of RARα1/KO-wnt1 transplanted tumor fragments was significantly (p=0.01) slower and RARα1/KO-wnt1 tumors cell suspension produced tumors after much longer latency. CONCLUSIONS: In vitamin A-replete mice, RARα1 is required to maintain normal mammary morphogenesis, but paradoxically, also efficient tumorigenesis. While its loss increases the density of the mammary epithelial tree and the content of luminal mammary progenitors, it appears to reduce the size of the MaSC-containing compartment, the mammary repopulating activity, and to delay significantly the MMTV-wnt1-mammary tumorigenesis. Whether the delay in tumorigenesis is solely due to a reduction in wnt1 target cells or due to additional mechanisms remains to be determined. These results reveal the intricate nature of the retinoid signaling pathways in mammary development and carcinogenesis and suggest that a better understanding will be needed before retinoids can join the armament of effective anti- breast cancer therapies.


Assuntos
Transformação Celular Neoplásica , Glândulas Mamárias Animais/crescimento & desenvolvimento , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Proteína Wnt1/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Antígeno CD24/análise , Feminino , Integrina beta1/análise , Isoenzimas/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/transplante , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/fisiologia , Camundongos , Camundongos Knockout , Morfogênese , Retinal Desidrogenase/metabolismo , Receptor alfa de Ácido Retinoico , Transdução de Sinais , Células-Tronco/citologia , Proteína Wnt1/genética
4.
Mol Cancer ; 3: 13, 2004 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15113415

RESUMO

BACKGROUND: The cellular retinol binding protein I gene (CRBP) is downregulated in a subset of human breast cancers and in MMTV-Myc induced mouse mammary tumors. Functional studies suggest that CRBP downregulation contributes to breast tumor progression. What is the mechanism underlying CRBP downregulation in cancer? Here we investigated the hypothesis that CRBP is epigenetically silenced through DNA hypermethylation in human and mouse breast cancer. RESULTS: Bisulfite sequencing of CRBP in a panel of 6 human breast cancer cell lines demonstrated that, as a rule, CRBP hypermethylation is closely and inversely related to CRBP expression and identified one exception to this rule. Treatment with 5-azacytidine, a DNA methyltransferase inhibitor, led to CRBP reexpression, supporting the hypothesis that CRBP hypermethylation is a proximal cause of CRBP silencing. In some cells CRBP reexpression was potentiated by co-treatment with retinoic acid, an inducer of CRBP, and trichostatin A, a histone deacetylase inhibitor. Southern blot analysis of a small panel of human breast cancer specimens identified one case characterized by extensive CRBP hypermethylation, in association with undetectable CRBP mRNA and protein. Bisulfite sequencing of CRBP in MMTV-Myc and MMTV-Neu/NT mammary tumor cell lines extended the rule of CRBP hypermethylation and silencing (both seen in MMTV-Myc but not MMTV-Neu/NT cells) from human to mouse breast cancer and suggested that CRBP hypermethylation is an oncogene-specific event. CONCLUSION: CRBP hypermethylation appears to be an evolutionarily conserved and principal mechanism of CRBP silencing in breast cancer. Based on the analysis of transgenic mouse mammary tumor cells, we hypothesize that CRBP silencing in human breast cancer may be associated with a specific oncogenic signature.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Proteínas de Ligação ao Retinol/genética , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Evolução Molecular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacologia , Camundongos , Oncogenes/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Proteínas Celulares de Ligação ao Retinol , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...